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ABSTRACT

Kalman filtering is introduced as a rational means for developing a monitoring strategy for concrete structures.
The mathematics and utility of linear Kalman filters are presented briefly, and the use of linear filters is demon-
strated for Fickian diffusion. The nonlinear extended Kalman filter is introduced and its utility in estimating a
transport parameter is demonstrated. The concrete service life computer program4SIGHT is introduced briefly
and combined with nonlinear filtering to refine the transport coefficient from a laboratory diffusion experiment.
A fictitious monitoring strategy is presented that uses Kalman filtering to both refine estimates and extend the
time between monitoring intervals. The advantages of using Kalman filtering, along with the remaining technical
difficulties, are discussed.
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1 - INTRODUCTION

Virtually all failures of concrete structures can be attributed to chemical attack, either from without (sulfate attack,
corrosion of the steel reinforcement, etc.) or from within the structure (alkali silica, etc.). The specific degradation
mechanism causing the failure may be either unforeseen or the rate of advancement may be underestimated.
Most concrete structures in the United States are still designed and built using historical knowledge that has
been tabulated in engineering manuals of practice, which do not address a specific structure and its environment.
Computer models exist for predicting concrete performance based on the cement properties, the concrete mixture
design, and the structure’s environment. Unfortunately, these models are used in only a small fraction of new
construction.

The best of these computer models have achieved an adolescent stage of development; they are technically sophis-
ticated but still have not incorporated all the complexity of concrete. Given this stage of technical advancement in
concrete service life models, it is unreasonable to expect any model to accurately predict performance with a high
degree of certainty, especially over very long time scales (e.g., centuries or millennia). By analogy, a Professional
Engineer (PE) will sign the drawings of a structural design, thereby staking his or her professional reputation on
the structural performance. It would be rare, however, for a concrete materials engineer to stake their reputation
by signing a corresponding statement of durability that a concrete structure will achieve the design service life.

This state of technical achievement is an important point for the construction of critical infrastructure concrete
components. If there are no computer models that are absolutely reliable, the only sensible alternative is to develop
a supplemental monitoring strategy. Ideally, this strategy would combine both computer model predictions and
periodic measurements. Kalman filtering [1] is one way to mathematically combine such data. Moreover, the
technique is optimized so that after combining both the model prediction and the physical measurement, the
uncertainty is less than that for either one individually. This idea is not new. Kalman filtering has already been
incorporated into hydrogeological modeling [2, 3] and the study of porous building materials [4].

The Kalman filter is introduced and applied to various artificial scenarios. The linear filter is applied to a Fickian
diffusion problem. The nonlinear filter is introduced as a means of parameter estimation in Fickian problems.
The4SIGHT computer model is introduced to highlight constraints that may arise in using Kalman filters with
computer service life models for concrete. A fictitious monitoring scenario is presented to demonstrate how
Kalman filtering may extend the time between measurements and simultaneously reduce uncertainty.

2 - LINEAR KALMAN FILTER

Let there be a vectorx that is a list{x0,x1, . . . ,xn} of all the quantities (internal field variables, transport parameters,
etc.) that a performance assessment model needs to predict the future time-dependent behavior of a system. In
addition, there may also be external control variablesu. For a linear model, the vector advances from timetk−1 to
time tk, by a linear transformation fromxk−1 to xk effected by a matrix propagatorA. If the transformation is a



linear approximation to a continuum problem, there may be model errorq introduced into the answer:

xk = Ak xk−1 +Bk uk−1 +qk−1 (1)

The process error vectorq does not include uncertainties in either the state vector or the transformation matrix
A ∈ Rn×n.

There are measurementsy = {y0,y1, . . . ,ym} taken at eachtk that characterize important properties of the system.
These properties are a function of the state vectorx at tk. For the linear model, the predicted outcomes of these
measurements can be expressed as a linear function of the state vectorx :

yk = Jk xk + rk (2)

The matrixJ ∈ Rm×n converts state vector quantities to measured quantities, and the vectorr represents the mea-
surement uncertainty. The vectorsq andr are assumed to represent errors having zero mean, and are characterized
by covariance matricesQ andR, respectively, and cannot account for inherent bias in a model.

In practice, the filter works by first advancing the process model to obtain a best model estimate and then correcting
this estimate based on the measurements. The state vector advanced to the point of just prior to the measurement
is denoted bŷxk− , and the estimated measurement valueŷk is based on this value:

x̂k− = Ak x̂k−1 +Bk uk−1 (3)

ŷk = Jk x̂k− (4)

The notation used here is that discrete time is denoted in vectors with a superscript, and in matrices by a subscript.
The vector superscript denotes instantaneous time, and the matrix subscript denotes the time to which it propagates
a vector. The superscriptk− denotes the time up to but just before the measurement at timetk. The filtering outlined
below advances the state vector from statek− to timetk.

At this point, Kalman filtering is used to obtain an adjusted state vectorxk that minimizes the uncertainty. The
prediction error covariance matrixP, which characterizes uncertainty in the state vector, is also advanced to the
time just before the measurement:

Pk− = AkPk−1AT
k +Qk (5)

It is then used to calculate the Kalman gain matrixKk:

Kk = Pk− JT
k

(
JkPk− JT

k +Rk
)−1

(6)

Finally, the state vectorx and the error covariance matrixP are advanced to the time of just after the measurement:

x̂k = x̂k− +Kk

[
yk−Jk x̂k−

]
(7)

Pk = Pk− −Kk
[
JkPk− JT

k +Rk
]
KT

k (8)

Note that the gain matrixKk looks something likePk−/
(
Pk− +Rk

)
. In effect, it varies from zero (large measure-

ment uncertainty) to one (large process uncertainty). More thorough discussions of Kalman filtering can be found
elsewhere [5].

3 - FICKIAN DIFFUSION

The linear Kalman filter is first applied to an example that is based on Fickian diffusion. The underlying process
satisfies Fick’s law relating fluxj and concentrationc via the diffusion coefficientD:

∂c
∂ t

= D∇2c (9)

For this example,D is assumed to be constant in both space and time.

The process model is a matrix equation forc(x, t) along a one-dimensional lattice, as shown in Fig. 1. The process
state vectorx = {x0,x1, . . . ,xN} represents the concentration at each node at a particular time. The distance
between nodes is∆x and the total lengthL = N∆x.
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Figure 1: Schematic of a one-dimensional diffusion problem.

The boundary and initial conditions are chosen so as to simplify the problem. Initially, the concentration at all but
elementx0 is zero. The boundary conditions are constants:

x0 = C xN = 0

The quantityx0 is included in the state vector so that the external concentration can be treated as an observed
quantity. The quantityxN is treated as a constant equal to zero, and is omitted from the state vector, thereby giving
x0 the significance of representing the concentration difference across the system of lengthL.

The time-dependent behavior of the state variablex is calculated using the the Crank-Nicholson algorithm, which
is unconditionally stable [6]. The resultant process model is a linear matrix equation:

xk = A xk−1 (10)

The propagator matrixA is a function of the dimensionless parameterη :

η =
D ∆t
(∆x)2 (11)

The parameterη is both a dimensionless time and a dimensionless diffusion coefficient in this discussion. In this
linear example, however, the∆t are constant. Over the course of a calculation, the matrixA is a constant. It does,
however, vary among ensemble realizations, for it incorporates parameter uncertainty in the diffusion coefficient
embedded withinη .

The monitoring will consist of measurements taken at depths of 0,L/4, L/2, and 3L/4. The numberN of com-
putational nodes is chosen to be divisible by four. As a result, the elements of the matrixJk are 1 along the four
diagonal elements corresponding to the location of the measurements, and zero otherwise.

As this is a fictitious example, there are no measured concentrations. As an alternative, measurements are calcu-
lated using the analytical solution for the system having concentrationc(0, t) = C andc(L, t) = 0 [7]:

c(ν∆x, tk) = C

{
1− ν∆x

L
− 2

π

∞

∑
n=1

1
n

sin
nπx
L

exp

[
−

(
kη

N2

)
n2

π
2
]}

(12)

The quantityν ∆x is the location of both the computational node and the measurement, and the ratio(kη/N2)
represents the total elapsed time in dimensionless scale invariant units.

The true measured values are calculated using Eq. 12 for each of the four locations. To this true value, a random
Gaussian deviate, with mean zero and standard deviationσm, is used to generate a value for the measurement
vectory.

The starting parameters, denoted true values with a subscript “T”, for the calculation are as follows:

CT = 1 σm = 0.05 ηT = 0.80 ση = 0.16 (13)

The true valuesCT and ηT are used in Eq. 12 above for generating measurement values. For the purpose of
filtering, however, it is assumed that the true value of diffusion coefficient withinηT is not known, and that a
measurement is needed to determine an initial value. This value is calculated usingηT and a Gaussian random
deviate with mean zero and standard deviationση ; in this example,η = 0.9140 and is constant for the duration of
the calculation. This initial value ofη is used in the propagator matrixA.
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Figure 2: Measured (filled circles) and filtered (solid line with error bars) concentration c as a function of scaled
time kηT/N2. The true values are denoted by the dotted line. (a) Linear filtering with no parameter estimation.
(b) Nonlinear filtering with parameter estimation. The initial values areη = 0.9867and C= 0.9140.

The results of the calculation are shown in Fig. 2(a) for the parameter values given in Eq. 13, andN = 8. (Note
that the initial values wereη = 0.9867 andC = 0.9140.) The measured values, calculated using Gaussian random
deviates, are shown as solid circles in the graph. The filtered prediction is depicted by the solid line, with error bars
denoting one standard deviation. The true values are denoted by the dotted lines. The discrepancy between the
filtered values and the true values is due to the +23 % initial error in the coefficientη . Unfortunately, filtering the
concentrations alone cannot overcome the underlying problem of initially overestimating the transport coefficient.
Incorporating parameter estimation will require nonlinear Kalman filtering.

Also shown in Fig. 2(a) are Gaussian curves denoting measurement and model uncertainty in the absence of filter-
ing. The Gaussian near the labelx0 represents the measurement uncertaintyσm. The other three Gaussians denote
the variation in the concentrations at dimensionless timekηT/N2 = 0.25 that are calculated using random initial
values forC andη . The error bars for the filtered values are considerably smaller than either the measurement or
the model output uncertainties.

4 - EXTENDED KALMAN FILTER

Nonlinear Kalman filters are designed for process and measurement models that cannot be expressed in the form
of Eqs. 1 and 2. More generally, nonlinear model predictions are expressed as functions of the predicted state
vectorx̂ and the control vectoru:

x̂k− = f
(

x̂k−1,uk−1
)

(14)

ŷk = g
(

x̂k−
)

(15)

The notationf() andg() denotes a function that returns a vector. From here, one can choose among extended [8],
unscented [9], and ensemble [10] Kalman filtering. Here, the extended method is described and used.

The extended Kalman filter (EKF) simplifies the nonlinear problem by linearizing the model near the prediction
point, and assuming that the errors in close proximity to the best guess are roughly Gaussian. The linearization
uses the Jacobian matricesF andG:

F =
∂ f
∂x

Fi j =
∂ fi
∂x j

G =
∂g
∂x

Gi j =
∂gi

∂x j
(16)

For the purely linear process model satisfying Eq. 1,F = A andG = J.

The Jacobian is the linearization about the best guess, and is used to update the error covariance matrices:

Pk− = FkPk−1F
T

k +Qk (17)



The remainder of the filter remains conceptually identical to the linear filter:

Kk = Pk− G
T
(
GkPk− G

T

k +Rk

)−1
(18)

Pk = Pk− −Kk
[
GkPk− GT

k +Rk
]
K

T

k (19)

x̂k = x̂k− +Kk

[
y−g(x̂k−)

]
(20)

This linearization of the nonlinear model is accurate for process models with weak nonlinearity. As the possibil-
ity for noticeable nonlinearity between measurements increases, the error covariance matrix underestimates the
uncertainty.

5 - TRANSPORT COEFFICIENT ESTIMATION

In the previous Fickian diffusion example, the diffusion coefficient was incorporated into the parameterη . To
obtain an optimal estimation ofη , the state vectorx is expanded to include the parameterη :

xT = [C, x1, x2, . . . , xN−1, η ] (21)

Although the addition of the parameterη into the state vector makes this a nonlinear filter problem, the pre-filtered
estimatêxk− can still be calculated using a linear matrix equation:

xk =
[

A 0
0

T
1

]
x̂k−1 (22)

The submatrixA is the same as that appearing in Eq. 10. Note that the process model has no means of adjusting
η , only the filtering will modify this quantity.

Using the extended Kalman filtering (EKF) discussed previously, the filtering is based on the Jacobian matrixF,
which is a composite matrix:

F =
∂ f
∂x

=
[

A aη

0
T

1

]
(aη)i =

∂ fi
∂η

(23)

Here, the elements ofaη are estimated by re-calculatingf using(η +∆η).

The results of the parameter estimation calculation are shown in Fig. 2(b). The same initial conditions were used
as for the linear filter results in Fig. 2(a). The filtered values approach the true values (dotted lines) considerably
sooner for the case of parameter estimation.

It is important to note that parameter estimation does not necessarily reduce uncertainty. The error bars in
Figs. 2(a) and 2(b) are approximately the same size. (It is, however, interesting to note how small the error
bars are, compared to the apparent variability in the measurements.)

The other important point is the significance of inherent model error. No amount of filtering can overcome a poor
model. In the absence of parameter uncertainty, the filtering was working against a systemic bias. Parameter
estimation removed this bias, and the filtered response approached the true value sooner.

6 - ELECTRO-DIFFUSION

The previous Fickian diffusion examples lay the basic foundation for service life calculations that are based
on diffusion being the primary transport mode. The more sophisticated concrete service life models, however,
incorporate the additional properties of electrolyte solutions. Although transport is primarily diffusion, the driving
force is a gradient in the chemical potentialµ. The fluxj i of thei-th species depends upon gradients in the species
concentrationci and the electrical potentialψ [11]:

je
i =−Di

(
1+

∂ lnyi

∂ lnci

)
∇ci −zi ci ui ∇ψ (24)

The coefficients are as follows:Di is the self-diffusion coefficient;yi is the molar activity coefficient;zi is the
valence;ui is the electrochemical mobility;ψ is the electrical potential. The electrical fieldψ can be determined
from imposing a zero current constraint:

F ∑
i

zi j i = 0 F : Faraday constant (25)



Given the initial and boundary conditions for the field variablec(x, t), Eqs. 24 and 25 completely describe diffusive
flux in bulk electrolyte. That is to say, Eq. 24 completely captures the electrochemical behavior of the solution.

Transport through a porous material having porosityθ and formation factorϒ can be expressed as a function of
transport through the bulk electrolyte [12]:

∂θci

∂ t
=−∇ ·

(
je
i

ϒ

)
(26)

This approach separates chemical effects from physical effects. As a result, the state vector is composed of the
individual ionic species concentrations at computational elements and two additional numbers: the formation
factorϒ and porosityθ .

7 - LABORATORY EXAMPLE

As an example of real porous materials filled with electrolyte, the data from a previous laboratory experiment
[13] are analyzed using nonlinear Kalman filtering. The laboratory experiment is a divided cell diffusion test
using a 6 mm thick porous alumina frit. The chamber on one side of the frit contains potassium iodide (KI),
and the chamber on the other side of the frit contains a test solution. The frit is initially saturated with the KI,
and the iodide concentration in each chamber is measured periodically. The two test solutions presented here are
potassium chloride (KCl) and potassium hydroxide (KOH).

The initial value for the two transport coefficients, porosity and formation factor, were each determined using in-
dependent laboratory measurements, and are further refined using Kalman filtering. In theory, these values could
have been roughly approximated and then refined using the Kalman filter. Because of the relatively small num-
ber of measurements in these examples, however, an accurate initial guess for the transport coefficients ensures
convergence in a short time span. Because these were nonreactive frits, the transport coefficients should have
remained constant in time. Here, the Kalman filter is used to predict the iodide concentration on each side of the
frit and to refine the value for the formation factor.

As these are laboratory experiments, the complete inventory of ionic species present is known. Therefore, elec-
troneutrality constrains the concentration of the ionic species; forM different ionic species present, onlyM−1 are
independent. Therefore, a state vector that includes the concentrations of all the species is not practical because a
numerical solution to the JacobianF requires changing one value while holding all other values constant.

For this example, the state vector included the concentrations for onlyM−1 of the species present. That way, each
of theM−1 species in the state vector could be varied, while keeping all the remaining concentrations constant.
The nonlinear process functionf(x) added a quantity of the remaining ionic species that ensured electroneutrality.
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Figure 3: Concentration (c) data (filled circles) and formation factor (ϒ) data (filled squares) for divided diffusion
experiment using nonreactive ceramic frit. (a) KI/KCl system. (b) KI/KOH system.

The experimental measurements and filtered response for the KI/KCl and the KI/KOH systems are shown in
Figs. 3(a) and 3(b), respectively. The measured concentrations on each side of the frit are denoted by filled circles,
which often occlude the measurement error bars. The filtered concentrations are the lines following the measured



values. These filtered values have error bars denoting one standard deviation, but they are very small and difficult
to see.

Also shown in the figures are the refined formation factorϒ values. These are shown as filled squares and error
bars denote one standard deviation. In both systems, approximately 10 measurements were needed before the
filtered formation factor converged to a steady value.

8 - MONITORING SCENARIO

The data presented in Fig. 3 help to illuminate the utility of Kalman filtering in a monitoring scenario. Not only can
Kalman filtering be used to improve the predicted change in a system, but it can also be used to improve estimates
of important parameters such as transport coefficients. These improved estimates are essential to ensuring accurate
predictions of future performance.

As a schematic example to demonstrate the utility of Kalman filtering, consider the following fictitious scenario:
A concrete structure is to go into service. One possible degradation mechanism depends upon the concentration
of a particular mobile species. The monitoring strategy is to periodically test for the species and refine future
predictions.

In practice, the performance of the structure will be estimated initially using the best available technology, often
in the form of a computer model. Using parameter uncertainty, the model can be used to obtain an ensemble
of performance predictions. Using any sensible means of quantifying the ensemble, one could make a statistical
statement as to when the predicted performance of some fraction of the ensemble cross a critical threshold. The
threshold could be any quantitative measure of performance. For example, threshold could be the concentration
of a mobile species of interest.

For this monitoring scenario, a number of progressively increasing concentration thresholds are chosen at the
outset, and monitoring is performed when the predicted concentration threshold crosses each successive critical
value.
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Figure 4: Fictitious monitoring scenario where monitoring is required as predetermined probabilities reach
threshold limits.

This monitoring scenario is shown schematically in Fig. 4, with observation critical thresholds denotedC1, C2,
etc. The initial ensemble of predicted responses is denoted by the lightest grey “fan” that originates at the origin.
The region denotes the collection of ensemble calculations using parameter uncertainty. The upper limit of the
region crosses the first thresholdC1 at timet1. This is when the first monitoring occurs.

The result of the first measurement is to refine the model, from which a new ensemble of responses are calculated
using the performance prediction model. This new ensemble is denoted by the medium grey region, which doesn’t
cross the next critical thresholdC2 until timet2. At this time a second measurement is taken, and the model refined



again. The result of refinement leads to a new ensemble denoted by the darkest region, which first crosses the
third thresholdC3 at timet3. The process is then repeated as indicated.

9 - CONCLUSION

Based on these preliminary results, Kalman filtering appears to be a potentially useful tool for developing a rational
monitoring strategy for concrete structures. One can effectively combine future model predictions and measure-
ments in an unambiguous manner and achieve a smaller uncertainty than that for either model or observation
individually.

Generally, filtering is most useful when the observable quantities have the greatest effect on the internal state
variables. The best approach is to measure the internal variable of interest. Therefore, direct measurements of
transport coefficients have a greater effect than concentration measurements. Also, the filtering requires a number
of iterations before the filtered quantities begin to stabilize. Therefore, it may be prudent to perform a number
of measurements early on in the process. Alternatively, these early measurements could be made on surrogate
specimens with identical exposure as the service structure.
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